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Types of Modeling Approaches and Frameworks: A General Overview 
Forest ecosystems are a major component of the terrestrial biosphere, which plays an 
outsized role in determining the fate of atmospheric carbon dioxide (CO2) in addition 
to exerting strong biophysical controls over carbon, water, and energy budgets 
(Bonan 2008). Accordingly, efforts to quantify terrestrial carbon cycling within forest 
ecosystems have been made to not only understand and monitor carbon dynamics 
within forests, but also to assess potential mitigation and adaptation strategies to 
combat climate change (Novick et al. 2022). The need to answer the fundamental 
question of “how are ecosystems changing?”, and the direct impacts of these changes 
on human lives, furthers the urgency to utilize and develop approaches to answer this 
foundational question (Dietze et al. 2018). With a diversity of methodologies in use, it 
may be useful to take a step back and examine the landscape of dominant modeling 
approaches used to assess ecosystem change.   

 
Modeling approaches to understand and quantify the forest carbon cycle can 

be categorized along two sides of the same continuum, empirical models and 
processed-based models. Empirical models derive results from extrapolating 
correlative relationships between observed variables (i.e., statistical models that rely 
on observations to predict an outcome using a function). Process-based models 
apply a more mechanistic approach to explicitly represent relationships within the 
model mathematically using sets of equations based on theoretical principles and 
laws selected heuristically (Korzukhin et al. 1996; Novick et al. 2022). In practice, these 
modeling approaches are not exclusive of one another, as most process-based 
models incorporate empirical information, either from data inputs derived from 
empirical models, or through validation using empirical models. On the other side of 
the spectrum, the correlative relationship assessed in empirical models are assumed 
to be linked to observed or unobserved processes or causal mechanisms (Makela et 
al. 2000).  
 

 
Figure 1: Theoretical modeling continuum for modeling approaches and frameworks to 

understand forest carbon stocks and fluxes 
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An important category of process-based models that inform, but do not 
explicitly model forest carbon are Earth System Models (ESMs). ESMs couple General 
Circulation Models (GCMs), climate models for atmospheric flows and processes, 
with Terrestrial Biosphere Models (TBMs) which represent land surface processes 
such as ocean circulation and biogeochemical processes. ESMs are used to predict 
future climate states through climate-ecosystem feedbacks by estimating physical 
and biogeochemical impacts (i.e., how changes to albedo caused by deforestation 
impacts atmospheric forcings). In doing so, they ‘close’ the carbon budget between 
the atmosphere, oceans, and land surface; that is, they connect the atmospheric 
carbon cycle with the terrestrial carbon cycle into a closed-loop global system. TBMs 
represent the terrestrial biosphere, of which forests are just one component, through 
highly mechanistic relationships to track the flow of carbon, water, and other 
elements through ecosystems with coupled-climate feedbacks informed by a variety 
of data and ground observations. While ESMs, TBMs, and GCMs have broad 
informative applications, forest carbon generally is not the focus of these models. The 
remainder of this resource guide will focus only on models used explicitly for 
estimation and assessment of forest carbon. 
 
Both empirical and process-based modeling approaches for estimating forest carbon 
dynamics have varying advantages and disadvantages. For example, empirical models 
rely on variables that are easily measured, but can be sensitive to bias linked to spatial 
heterogeneity, leading to unrealistic estimation (Novick et al. 2022). Alternatively, 
process-based models are constrained to prevent unrealistic outcomes but remain 
sensitive to bias inherent to the model structure. Establishing a set of criteria for 
model selection is critical when selecting a model or an approach to estimating forest 
carbon stocks and fluxes. Among other factors, modeling frameworks should be 
available, peer-reviewed, validated, and verified. However, other factors may be 
important to satisfy specific modeling needs, e.g., important considerations for how a 
model assesses error, uncertainty, and biases. 
 
Approaches to Modeling Forest Carbon Dynamics 
Estimating Forest Growth 

Models that focus specifically on forest carbon dynamics approach forest growth in 
two distinct ways, where growth is either: 1) driven by empirical yield curves or 2) 
driven by simulating photosynthesis. Both approaches can model forest dynamics at 
the individual level (i.e., individual stems or trees) (Ma et al. 2017) or at the cohort or 
stand level (i.e., groupings of trees or communities). Further, regardless of approach, 
models are either spatial or aspatial and spatially referenced in representation of 
forests. Models that are inherently spatial in nature can model at different scales, from 
global, to kilometers, to meters to individual trees. Spatial models represent the forest 
or trees in space or a specific location on the Earth’s surface using pixels or vectors. 
Whereas aspatial models ignore the representation of forest dynamics in space (or 
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with spatially referenced frameworks), they may use a categorical spatial unit to 
characterize a forest stand such as county, management unit, or ecoregion. 
 
Empirical Yield Curve-Driven Growth Models  

Models that use growth-yield relationships estimate forest productivity through the 
relationship between stand age, volume, height, biomass, specific gravity, and other 
forest characteristics or information collected by operational foresters used in forest 
planning and inventorying (Kurz et al. 2009). Growth-yield-based models generally 
capture stand dynamics, such as growth, mortality, regeneration, and competition, 
inherently through correlative relationships (i.e., predicting a response variable from 
observations such as using tree age to predict tree volume). 
 
Photosynthesis-Driven Growth Models 

Models that use photosynthesis-driven growth require similar datasets to TBMs, such 
as leaf-area index, climate variables, and soil variables to estimate productivity over 
time. Unlike growth-yield-based models, photosynthesis-based models stratify the 
forest canopy into vegetation types to explicitly model productivity by simulating 
interactions between different components of the ecosystem such as biophysical 
variables, light and competition. 
 

Estimating Forest Carbon Dynamics 

Modeling frameworks, or the theoretical description of a model that accounts for 
forest carbon (i.e., carbon stocks, transfers between pools, and emissions) have two 
broad methodological approaches to estimate forest carbon dynamics that fall within 
tier 3, or most advanced, approaches outlined by the Intergovernmental Panel on 
Climate Change (IPCC) (Kurz et al. 2009): 
 
Method 1: Inventory change 

“Inventory change” methods involve calculating the difference between inventory 
remeasurement periods (i.e., net change in carbon = C in t2 – C in t1). This method is 
highly accurate and built upon robust empirical allometric models to convert 
measurements of forest characteristics to carbon but can be costly in time and 
funding. Additionally, this method requires a robust sampling design to ensure 
unbiased estimates of forest characteristics across the desired study area. Depending 
on the repeat interval between remeasurements, this method may not provide 
information on inter-annual variation within the observation period (Kurz et al. 2009). 
Furthermore, while this method inherently integrates all relevant drivers of carbon 
(i.e., natural disturbance, management, land-use change), it may not necessarily 
incorporate non-CO2 emissions. 
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Method 2: One inventory plus change 

“One inventory plus change” methods still require a detailed forest inventory as well 
as detailed information around land-use change (LUC), management practices, and 
natural disturbances. These methods also require empirical models for estimating 
growth (through growth-yield relationships or simulating photosynthesis) and 
processed-based equations for turnover rates applied within a process-based 
modeling framework. Applications of this method require a high level of complexity, 
computational expense, and analyst training, but lend strength to future predictions if 
model parameters are properly constrained and validated.  
 

Uncertainty and Quality Assurance in Forest Carbon Measurements 
Understanding and evaluating model uncertainty is important for assessing the 
robustness of inferences being drawn, with strong ramifications for decision-making 
and planning. In purely empirical models, uncertainty is both inherent and quantified, 
constituting error associated with sampling design, observations (e.g., natural 
variation in space and time), and statistical methods. On the other hand, process-
based model outputs often lack uncertainty estimates from deterministic simulations 
(Larocque et al. 2008). Lack of uncertainty estimation does not mean there is a lack of 
uncertainly; this can lead to poor model performance and unsound decision-making 
regarding environmental issues (Rowe 2004). Within process-based models, 
uncertainty can arise from error propagation resulting from variability in model inputs, 
uncertainty associated with the model structure itself, as well as uncertainty toward 
scenario forecasting (Adams et al. 2013; Bonan and Doney 2018). 
 
In both modeling approaches, uncertainty may arise from a host of inputs and 
dimensions. Larocque et al. 2008 summarizes the different sources of uncertainty as: 

1. Data uncertainty resulting from statistical errors associated with sampling 
methodology, field measurement errors, instrument imprecision, or differences 
in spatial or temporal scales; 

2. Sensitivity to initial conditions; 
3. Lack of understanding of the underlying processes, resulting in the derivation 

of inaccurate or inadequate mathematical representation in model structure;  
4. Parameter estimates, which may be associated with the use of parameter 

estimation methods or inaccurate assumptions about the parameter 
distribution; 

5. Unknown or poorly constrained drivers; and 
6. The amplitude of natural variation associated with the biological system under 

study. 
 



 

6 
 

Simulation Uncertainty and Assumptions 

While major advances in both data models and tools for estimating forest carbon 
dynamics have been made, large research gaps remain, serving as additional sources 
of model uncertainty for predictions and forecasting. Empirical models have strong 
predictive power; however, the mechanistic underpinnings of process-based models 
often lend higher predictive power when attempting to forecast future forest 
dynamics and climate scenarios. These forecasts or simulations create unique 
challenges when trying to predict future states of forests. Specific care must be taken 
in stating and deciding on assumptions for model representation of forest dynamics 
to obtain improved modeled results and reduced uncertainty (Bonan and Doney 
2018). 

 
Ecosystem models are, broadly, an abstraction of complex systems. Increasing 

accuracy in representation of forest dynamics across scales within both deterministic 
(i.e., process-based) and empirical models will increase confidence in forest carbon 
modeling results. However, more complexity does not always lead to reduced 
uncertainty and, in turn, better predictions. The predictability of a forecast is impacted 
by initial conditions, imperfections in the understanding of underlying biophysical 
dynamics, stochasticity and natural variability, randomness inherent to discrete and 
especially rare events (e.g., severe drought events or landslides), and model 
uncertainty (both structural and parameterizations).  

 
Table 1 provides a non-exhaustive list of examples of forest dynamics, their 

influence on modeled forest carbon dynamics, and specific knowledge gaps and how 
those gaps can weaken modeling results. The forest dynamics listed influence unique 
aspects of the forest carbon cycle at disproportionate scales. Furthermore, some of 
the knowledge gaps related to forest dynamics become problematic and exacerbated 
when implemented in longer simulations across heterogeneous landscapes. For 
example, uncertainty surrounding regeneration and post-disturbance recovery 
dynamics may have little effect on shorter simulation lengths (i.e., < 20 years), but will 
become increasingly pronounced as the simulation period is extended (i.e., until the 
end of the century).  
 
 
 
 
 
 
 
 
 



 

7 
 

Table 1. Examples of forest dynamics that impact forest carbon model results, knowledge gaps, 
and future research needs 
 
Forest 
Dynamic 

Effects on forest carbon Knowledge gap and research needs 

Regeneration 
and mortality 

Strongly influences carbon future 
behavior in forest ecosystems. 
These dynamics interact with both 
human management and growth 
conditions, leading to changes in 
future carbon stocks and fluxes 

Growth and yield models generally 
exclude regeneration and mortality; 
greater understanding of how both 
human induced change and climate-
driven change impact regeneration 
and morality is needed to 
appropriately account future carbon 
accumulation 

Disturbance  Biotic disturbances (i.e., pest and 
disease outbreaks) and abiotic 
disturbances (i.e., fire and wind) 
influence forest productivity and 
mortality through a variety of 
mechanisms ultimately leading to 
perturbations in forest carbon 
cycling by changing carbon pool 
quantities and turnover 

Accurately being able to predict 
future biotic and abiotic disturbances 
in extent, frequency, and severity is 
necessary to capture future 
disturbance dynamics to better model 
forest carbon; more accurate 
representation of post-disturbance 
dynamics is also necessary across 
longer timescales to increase accuracy 
future predictions 

Succession 
and 
senescence 

Late-stage successional dynamics 
and age-dependent senescence 
are poorly understood with 
regards to tree carbon balance, 
growth, and mortality which 
strongly effects carbon storage 
and turnover 

Current growth models do not 
adequately capture late-stage stand 
dynamics and the interaction with 
biomass productivity and storage 
contributing to a strong need for 
better models to understand late-
stage forest dynamics and associated 
uncertainty with generalized 
allometric models 

Competition 
and site 
quality 

Carbon allocation dynamics 
change in response to competition 
for light, space, and nutrients, 
affecting growth and mortality. 
Furthermore, poorly understood 
interactions with site quality (i.e., 
soil fertility, slope, and hydrology) 
impacts growth characteristics 
influencing carbon stock change 
over time 

Need for strong understanding of the 
future effects on growth and tree 
development in response to changes 
to competition caused by 
anthropogenic and climate factors as 
well as the interaction with soil fertility 
and soil water content. Increasing 
accuracy across heterogeneous 
landscapes allows for improved 
model-driven decision making 

Climate Future growth conditions will 
impact the tree growth, survival 
strategies, and physiological 
responses to stress. For example, 
changes to atmospheric CO2 
concentrations and water supply 
will strongly impact future trends 
in growths 

Need for better understanding of tree 
physiological responses to future 
climatic states such as carbon 
allocation in growth versus 
reproduction to understand future 
trends in carbon stock change and 
turnover rates 
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Simulation assumptions chosen to represent forest dynamics can have 

important impacts on projected sinks and sources of carbon in forested landscapes. 
For example, the model form chosen to predict stand volume using basal area or age 
strongly influences net annual increments of carbon. Similarly, the function chosen to 
estimate the amount of biomass and carbon from tree volume also influences 
estimation of forest carbon by influencing growth over time. This reality, that 
assumptions impact results, is even more important to consider and acknowledge 
when forecasting future carbon dynamics to inform decision-making and planning. 
Increasing the length of forecasting (i.e., how far into the future one’s model projects) 
inherently introduces more uncertainty from a lack of ability to predict (i.e., make 
accurate assumptions about) future states.  
 
Broad thematic areas of focus to continually improve model framework and model 
predictions include: 
 
Improved integration of inventory data to align with modeling frameworks – 
continual development of better data models to support the ingestion of forest 
inventory data with existing modeling frameworks.  
 
Improved representation of biophysical feedbacks with forest dynamics – 
continued advancement of empirical studies to support and constrain process-based 
models with the specific focus on understanding climate-forest feedbacks.  
 
Continued validation of modeled results with empirical observations – ensuring 
model validation and accuracy, modeling frameworks should continually be refined 
and updated with newer innovated data tools, in an iterative process to cross-validate 
results with ground observations and measurements.  
 
Continued advancement of model tools and data – to refine methodologies for 
better representation of forest dynamics. Ideally bridging the gap between theory of 
forest dynamics with real-world observations. 
 

Methods to Address Uncertainty in Forest Carbon Models 
While error and uncertainty are inherent to empirical modeling approaches, the most 
common methods to address uncertainty within process-based models are sensitivity 
analyses, differential equation optimization and analytical solutions, and Monte Carlo 
methods. Other non-probabilistic methods exist but are not as commonly used 
(Larocque et al. 2008).  
 
Sensitivity analyses can provide parameter evaluation without quantifying actual 
estimation of error, as might be done with uncertainty analysis (Zhao et al. 2022). 
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Model parameters are systematically assessed while holding other model parameters 
constant; inference can be drawn from identifying which parameters influence model 
outputs and to what degree (Kremer 1983).  
 
Approaches that apply differential equation and analytical solutions of equations 
estimate uncertainty by analyzes model output response from the partial derivative 
with respect to input parameters by increasing the order of derivatives to estimate 
error propagation (Hammonds et al. 1994). However, the approach Is generally not 
appropriate for forest carbon models due to the complex nonlinear relationships 
within the model structure.  
 
Monte Carlo methods are the most used method to estimate error propagation and 
evaluate parameter influence on model uncertainty. Monte Carlo methods consist of 
running a model multiple times sampling the probability distribution function of model 
inputs with increasing statistical validity with subsequent increases in the sampling 
intensity (Smith and Heath, 2001). The relatively simple assumption for Monte Carlo 
methods represents an advantage in estimation uncertainty by allowing the 
computation of frequency distributions, means, or standard deviations of both state 
variables of interest and modeled results. 
 

Guidance on Uncertainty and Quality Assurance 
Robust estimation of carbon stocks and carbon change requires adequate measures 
of quality control and assurance, with the understanding that there is no such thing as 
a “perfect” forecast or prediction (Dietze et al. 2018). Quality control and assurance 
are assessed via routine and consistent checks to verify the integrity, correctness, and 
completeness of estimated of data inputs and modeled results. Determining best 
practices for assuring the validity of modeled results is a difficult task; there are 
strengths and weaknesses to various approaches. However, some underlying 
principles may be applied to promote better estimation of both data inputs, model 
outputs, and uncertainty associated with model structure and predictive simulations: 
 
Utilizing best possible data inputs and data tools collected using robust 
methodologies. Ensuring high quality data and data tools for model input and 
parameterization increases confidence in predictive results. Peer-reviewed and openly 
available data are generally considered to be higher quality. Additionally, applying 
simplified methods, such as representing data as “averaged” values for data inputs, 
lends strength to future prediction due to the high complexity in predicting future 
stochasticity and randomness. 

 
Utilizing models, modeling frameworks, and methods that have been published 
and verified throughout the literature. There is a long history of models and data 
tools developed to capture forest carbon dynamics. Relying on commonly used and 
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peer-reviewed models lends strength to any results or inferences being made. 
Furthermore, open-source modeling tools provide additional credibility to the 
modeled results and allows for reproducibility. 
 
Identifying potential sources of uncertainty such as data inputs, model structure, 
model calibration, methodological approach, and simulation assumptions. 
Articulating all assumptions made during the modeling process is important to inform 
the decision-making process and assess the robustness of results. Acknowledging 
information or data gaps can help inform modeling results as well as explain model 
behavior so that correct conclusions can be drawn. 

 
Comparing modeled results to previously published model results in the literature 
for quality assurance and verification. Model and verify past trends within the 
chosen approach before simulating future projections (i.e., Trend Analyses). Properly 
assessing model outputs with regards to other literature findings to ensure proper 
constraints of estimates or to identify sources of model disagreement. 

 
Conduct an analysis to understand degrees of uncertainty, including regarding 
limitations of mechanisms, model simulation processes, data observation, and 
robustness of results. Methods for error-propagation may include: 1) sensitivity 
analysis; 2) analytical solution of differential equations; 3) Monte Carlo analysis; 4) 
fuzzy sets; 5) first-order analysis; 6) Bayesian approaches. 
 
Shifting the paradigm for carbon estimation from assessing statuses to estimating 
trends (e.g., periodic estimation to continuous monitoring). Individual assessments 
and studies provide multitudes of information. Yet, improving confidence in future 
projections requires an increase in the frequency of analyses, to both assess past 
decisions and reevaluate future planning and decision making. Currently, the 
paradigm in ecosystem modeling is shifting from assessing the status of the 
ecosystem on a periodic basis, to continual monitoring of ecological states and 
trends. Utilizing modeling frameworks that allow for increased frequency of results as 
new information becomes available create an iterative process of quantitative 
assessment. This continuous refinement of methods as new models and data tools 
become available from trusted sources, ensures greater result latency for model 
driven decision-making. 
 
 
 
 



 

11 
 

References 
Adams H.D., Williams, A.P., Xu, C., Rauscher, S.A., Jiang, X., McDowell, N.G. (2013). 

Empirical and process-based approaches to climate-induced forest mortality 
models. Frontiers in Plant Science. Vol 4(438):1-5.  

 
Bonan, G.B (2008). Forests and Climate Change: Forcings, feedbacks, and the climate 

benefits of forests. Science. Vol. 320(5882):1444-1449. 
 
Bonan, G.B. and Doney, S.C. (2018). Climate, ecosystems, and planetary futures: The 

challenge to predict life in Earth system models. Science, DOI: 
10.1126/science.aam8328. 

 
Dietze, M.C., Fox, A., Beck-johnson, L.M.,…White, E.P. (2018). Iterative near-term 

ecological forecasting: Needs, opportunities, and challenges. PNAS. 115(7): 
1424-1432. 

 
Fisher, R.A. & Koven, C.D. (2021). Perspectives on the future of land surface models 

and the challenges of representing complex terrestrial systems. Journal of 
Advances in Modeling Earth Systems, 12, e2018MS001453. 

 
Hammonds, J.S., Hoffman, F.O., Bartell, S.M., (1994). An Introductory Guide to 

Uncertainty Analysis in Environmental and Health Risk Assessment. ES/ER/TM-
35/R1, Oak Ridge National Laboratory, Oak Ridge, TN. 

 
Korzukhin, M.D., Ter Mikaelian, M.T., and Wagner, R. G.(1996). Process versus empirical 

models: which approach or forest ecosystem management. Can. J.For.Res. 26, 
879–887.doi:10.1139/x26-096 

 
Kremer, J.N., 1983. Ecological implications of parameter uncertainty in stochastic 

simulation. Ecol. Model. 18, 187–207. 
 
Kurz, W.A., Dymond, C.C., White, T.E., Stinson, G., Shaw, C.H., Rampley, G.J., Smyth, C., 

Simpson, B.N., Neilson, E.T., Trofymow, J.A., Metsaranta, J., Apps, M.J. (2009). 
CBM-CFS3: A model of carbon-dynamic in forestry and land-use change 
implementing IPCC standards. Ecological Modelling. 220:480-504.  

 
Larocque, G. R., Bhatti, J. S., Boutin, R., & Chertov, O. (2008). Uncertainty analysis in 

carbon cycle models of forest ecosystems: research needs and development of 
a theoretical framework to estimate error propagation. Ecological 
Modelling, 219(3-4), 400-412. 

 



 

12 
 

Ma, J., Shugart, H.H., Yan, X., Cao, C., Wu, S., Fang, J., 2017. Evaluating carbon fluxes of 
global forest ecosystems by using an individual tree-based model FORCCHN. 
Sci. Total Environ. 586, 939–951. 

 
Makela, A., Landsberg, J., Ek, A.R., Burk, T.E., Ter-Mikaelian, M., Agren, G.I., Oliver, C.D., 

Puttonen, P. (2000). Process-based models for forest ecosystem management: 
current state of the art and challenges for practical implementation. Tree 
Physiology, 20, 289-298. 

 
Mina, M, Messier, C., Duveneck, M.J., Fortin, M., Nuria, A. (2021). Managing for the 

unexpected: Building resilient forest landscapes to cope with global change. 
Global Change Biology, 00:1-19. 

 
Novick, KA., Metzger, S., Anderegg, W.R.L., Barnes, M., Cala, D.S., Guan, K., Hemes, K.S., 

Hollinger, D.Y., Kumar, J., Litvak, M., Lombardozzi, D., Normile, C.P., Oikawa, P., 
Runkle, B.R.K., Torn, M., Wiesner, S. (2022) Informing Nature-based Climate 
Solutions for the United States with the best-available science. Global Change 
Biology. 28:3778–3794. 

 
Rowe, W. D. (1994). Understanding uncertainty. Risk analysis, 14(5), 743-750. 
 
Smith, J.E., Heath, L.S., (2001). Identifying influences on model uncertainty: an 

application using a forest carbon budget model. Environ. Manage. 27, 253–267. 
 
Zhao, J., Liu, D., Zhu, Y., Peng, H., Xie, H. (2022). A review of forest carbon cycle 

models on spatiotemporal scales. Journal of Cleaner Production. 399:120692. 
 

Additional Resources 
Webinars/videos 
Bullock, E. (2017, June 23). Module 2.7 Estimation of uncertainties [Lecture 

presentation]. REDD+ MRV training module series, GOFC-GOLD Land Cover 
Office, World Bank. 

• Training presentation highlighting how to identify sources of uncertainty in the 
estimates of area change and carbon stocks change, how to implement the 
correct steps to calculate these uncertainties, and discusses the possible 
treatment of uncertainties in a conservative way 

 
Dietze, M. (2020, April 23). Propagating Uncertainty [Lecture presentation]. 

Ecological Forecasting lecture series, National Science Foundation’s National 
Ecological Observatory Network (NEON). 
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• Presentation introducing the key concepts involved in propagating and 
analyzing uncertainty: sensitivity analysis, uncertainty propagation, uncertainty 
analysis, and optimal design 

 
LaDeau, S. (2020, April 23). Characterizing Uncertainty [Lecture presentation]. 

Ecological Forecasting lecture series, National Science Foundation’s National 
Ecological Observatory Network (NEON). 

• Presentation discussing classic assumptions in traditional statistical models and 
approaches to model uncertainties in models versus observations, with 
information on accounting for model error, observation error, and error within 
frameworks, modeling missing data, and the use of latent variables 

 
Lombardozzi, D. (2014, October 22). Uncertainty in Projections of Future Terrestrial 

Carbon Cycling [Seminar presentation]. Montana Institute on Ecosystems' 
Rough Cut Science Series. 

• Presentation discussing causes of uncertainty in modeling, effects of natural 
variability on the carbon cycle, and when climate change driven effects on the 
carbon cycle become apparent 

 
 

Peer-Reviewed Resources 
Adams, H. D., Williams, A. P., Xu, C., Rauscher, S. A., Jiang, X., & McDowell, N. G. (2013). 

Empirical and process-based approaches to climate-induced forest mortality 
models. Frontiers in plant science, 4, 438. 

• This paper’s intro lays out quite systematically differences between empirical 
and processed-based approaches and uncertainty associated with both with a 
focus on forest mortality. A table of relative differences between modeling 
approaches is provided and bridging representation across forest scales 

 
Campbell, John L.; Green, Mark B.; Yanai, Ruth D.; Woodall, Christopher W.; Fraver, 

Shawn; Harmon, Mark E.; Hatfield, Mark A.; Barnett, Charles J.; See, Craig R.; 
Domke, Grant M. 2019. Estimating uncertainty in the volume and carbon 
storage of downed coarse woody debris. Ecological Applications. 29(2): 
e01844-.  

• Article provides methods to address shortcomings in quantifying uncertainty of 
forest properties that are not directly measures such as wood density and 
carbon concentration and its relationship with downed coarse woody debris. 
Paper provides confidence estimation of downed coarse woody debris and 
identifies where resources can be applied to improve monitoring designs 

 
Clough, Brian J.; Russell, Matthew B.; Domke, Grant M.; Woodall, Christopher W. 2016. 

Quantifying allometric model uncertainty for plot-level live tree biomass stocks 
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with a data-driven, hierarchical framework. Forest Ecology and Management. 
372: 175-188. 

• Provides data-driven hierarchical modeling approach to predict aboveground 
and foliage biomass with relative uncertainties compared against generalized 
biomass models utilized in North America. However, results remained biased in 
model fitting for woodland and conifer species suggesting poor representation 
of individual tree model error while improving overall accuracy and precisions 
of annual regional GHG inventories 

 
Dietze, M. C., Fox, A., Beck-Johnson, L. M., Betancourt, J. L., Hooten, M. B., Jarnevich, 

C. S., ... & White, E. P. (2018). Iterative near-term ecological forecasting: Needs, 
opportunities, and challenges. Proceedings of the National Academy of 
Sciences, 115(7), 1424-1432. 

• Articles discusses the advantages and disadvantages of near-term ecological 
forecasting and decision-making as well as suggestions to improve 
interoperability, latency, and uncertainty quantification in ecological forecasting 
to push predictive ecological modeling forward 

 
Domke, G. M., Woodall, C. W., & Smith, J. E. (2011). Accounting for density reduction 

and structural loss in standing dead trees: Implications for forest biomass and 
carbon stock estimates in the United States. Carbon Balance and 
Management, 6(1), 1-11. 

• Traditionally, standing dead trees were estimated as a function of live growing-
stock trees. This study incorporates standing dead tree adjustments to supplant 
purely modeled estimation to assess biomass and C stocks across spatial scales 
with improved error estimation. 

 
Fisher, R. A., & Koven, C. D. (2020). Perspectives on the future of land surface models 

and the challenges of representing complex terrestrial systems. Journal of 
Advances in Modeling Earth Systems, 12(4), e2018MS001453. 

• Paper identifies three “grand challenges” in the development of Land Surface 
Models based around complexity, representation of land surface heterogeneity, 
and parametric dynamics across a broad set of problems. Authors discuss 
previous progress and future directions of research for each challenge 

 
Gormanson, Dale D.; Pugh, Scott A.; Barnett, Charles J.; Miles, Patrick D.; Morin, 

Randall S.; Sowers, Paul A.; Westfall, James A. 2018. Statistics and quality 
assurance for the Northern Research Station Forest Inventory and Analysis 
Program. Gen. Tech. Rep. NRS-178. Newtown Square, PA: U.S. Department of 
Agriculture, Forest Service, Northern Research Station. 25 p. 
https://doi.org/10.2737/NRS-GTR-178. 

• Report outlines inventory methodologies, the multi-phase inventory process, 
and other FIA surveys. The report provides stratification and precision methods, 
integration of newer data models with previous inventories and detailed 
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information on sources and types of error within the USFS FIA database. 
Furthermore, it provides documentation on data collection and quality 
assurance of data measured in the field 

 
Harmon, M. E., Fasth, B., Halpern, C. B., & Lutz, J. A. (2015). Uncertainty analysis: an 

evaluation metric for synthesis science. Ecosphere, 6(4), 1-12. 
• Devises four general classes of uncertainty estimation (1) measurement 

uncertainty (2) sampling uncertainty (3) model prediction uncertainty (4) 
model selection uncertainty. Examine sources of uncertainty to improve future 
biomass estimation outlines future opportunities and challenges. 

 
Larocque, G. R., Bhatti, J. S., Boutin, R., & Chertov, O. (2008). Uncertainty analysis in 

carbon cycle models of forest ecosystems: research needs and development of 
a theoretical framework to estimate error propagation. Ecological 
Modelling, 219(3-4), 400-412. 

• Article discusses development of process-based models for forest ecosystems 
and knowledge gaps in error propagation of forest C models. Discusses 
commonly used methods to facilitate uncertainty to further facilitate model 
development and model-driven decisions systems to derive optimum pathways 

 
Link, J.S., Ihde, T.F., Gaichas, S.K., Field, J.C., Brodziak, J.K.T., Townsend, H.M., 

Peterman, R.M. (2012). Dealing with uncertainty in ecosystem models: The 
paradox of use for living marine resource management. Progress in 
Oceanography, 102, 102-114.  

• Article characterizes uncertainty as applied to ecosystem models into six major 
factors, including: natural variability; observation error; inadequate 
communication among scientists, decision-makers and stakeholders; the 
structural complexity of the model(s) used; outcome uncertainty; and unclear 
management objectives 

 
Makela, A., Landsberg, J., Ek, A.R., Burk, T.E., Ter-Mikaelian, M., Agren, G.I., Oliver, C.D., 

Puttonen, P. (2000). Process-based models for forest ecosystem management: 
current state of the art and challenges for practical implementation. Tree 
Physiology, 20, 289-298. 

• Article discusses the operational implementation of process-based models to 
practical forest management, reviewing several carbon balance models for 
estimating stand productivity and individual tree growth and competition, and 
reviewing model calibration and validation methods that take account of the 
hybrid character of models 

 
McRoberts, R. E., Chen, Q., Domke, G. M., Ståhl, G., Saarela, S., & Westfall, J. A. (2016). 

Hybrid estimators for mean aboveground carbon per unit area. Forest Ecology 
and Management, 378, 44-56. 
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• IPCC outlines two criteria for satisfactory guidance: 1) minimizing bias and 2) 
minimizing uncertainty. McRoberts introduces a novel hybrid inferential 
framework to estimate error propagation for tree-level allometric models, a 
source of bias and uncertainty previously ignored in carbon estimation to meet 
IPCC guidance. This study considers 6 sources of uncertainty and determines 
that allometric model variance is negligible when using species-specific models 
and model assisted regression estimators. 

 
Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanul, S., Buendia, L., 

Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K., & Tanabe, K. (Eds) 
(2000). Intergovernmental Panel on Climate Change Good Practice Guidance 
and Uncertainty Management in National Greenhouse Gas Inventories, Chapter 
6: Quantifying Uncertainties in Practice. IPCC National Greenhouse Gas 
Inventories Programme. 

• Describes good practice in estimating and reporting uncertainties associated 
with both annual estimates of emissions and emission trends over time, and 
identifies types of uncertainty from the viewpoint of the inventory practitioner, 
and shows how to obtain expert judgements in a consistent manner 

 
Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanul, S., Buendia, L., 

Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K., & Tanabe, K. (Eds) 
(2000). Intergovernmental Panel on Climate Change Good Practice Guidance 
and Uncertainty Management in National Greenhouse Gas Inventories, Chapter 
8: Quality Assurance and Quality Control. IPCC National Greenhouse Gas 
Inventories Programme. 

• This guidance establishes good practice consistent with the Revised 1996 IPCC 
Guidelines for National Greenhouse Gas Inventories (IPCC Guidelines), and 
reflects practicality, acceptability, cost-effectiveness, existing experience, and 
the potential for application on a worldwide basis, to improve transparency, 
consistency, comparability, completeness, and confidence in national 
inventories of emissions estimates. 

 
Penman, J., Kruger, D., Galbally, I., Hiraishi, T., Nyenzi, B., Emmanul, S., Buendia, L., 

Hoppaus, R., Martinsen, T., Meijer, J., Miwa, K., & Tanabe, K. (Eds) 
(2000). Intergovernmental Panel on Climate Change Good Practice Guidance 
and Uncertainty Management in National Greenhouse Gas Inventories, Annex 1: 
Conceptual Basis for Uncertainty Analysis. IPCC National Greenhouse Gas 
Inventories Programme. 

• This annex document for IPCC good practice guidance is concerned with the 
basis for concepts used to discuss uncertainties in greenhouse gas inventories 

 
Radtke, P., Walker, D., Frank, J., Weiskittel, A., DeYoung, C., MacFarlane, D., ... & 

Westfall, J. (2017). Improved accuracy of aboveground biomass and carbon 
estimates for live trees in forests of the eastern United States. Forestry: An 
International Journal of Forest Research, 90(1), 32-46. 
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• Study conducts comprehensive assessment and testing of alternative volume 
and biomass models for individual tree models employed in the component 
ratio method (CRM) currently used in the US’ National Greenhouse Gas 
Inventory 

 
Russell, M. B., Domke, G. M., Woodall, C. W., & D’Amato, A. W. (2015). Comparisons of 

allometric and climate-derived estimates of tree coarse root carbon stocks in 
forests of the United States. Carbon balance and management, 10(1), 1-14. 

• Study estimates belowground C using current methods applied in the United 
States’ national greenhouse gas inventory (US NGHGI) and describes a new 
approach for merging both allometric models with climate-derived predictions 
of belowground C stocks 

 
Smith, P., Soussana, J. F., Angers, D., Schipper, L., Chenu, C., Rasse, D. P., ... & Klumpp, 

K. (2020). How to measure, report and verify soil carbon change to realize the 
potential of soil carbon sequestration for atmospheric greenhouse gas 
removal. Global Change Biology, 26(1), 219-241. 

• Article describes how repeat soil surveys are used to estimate changes in soil 
organic carbon (SOC) over time, and how long-term experiments and space-
for-time substitution sites can be used to test models, and considers models 
that can be used to simulate and project change in SOC and examine the MRV 
platforms for SOC change already in use in various countries/regions 

 
Woodall, C.W., Domke, G.M., Coulston J., Russell, Smith, J.A., Perry, C.H., Ogle, S.M., 

Healey S., Gray, A. (2015). Reducing uncertainty and increasing consistency: 
technical improvements to forest carbon pool estimation using the national 
forest inventory of the US. In: Stanton, Sharon M.; Christensen, Glenn A., comps. 
2015. Pushing boundaries: new directions in inventory techniques and 
applications: Forest Inventory and Analysis (FIA) symposium 2015. 2015 
December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931. Portland, 
OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research 
Station. p. 133. 

• Report to outline technical improvements in FIA estimation of C estimates to 
recued uncertainty by 1) refining forest floor C estimates, 2) updating live 
belowground and understory carbon pool modeling approaches, 3) refining 
objectives delineations between woodland and forest land uses, and 4) revising 
managed land delineations 

 
Yanai, R. D., Mann, T. A., Hong, S. D., Pu, G., & Zukswert, J. M. (2021). The current state 

of uncertainty reporting in ecosystem studies: a systematic evaluation of peer-
reviewed literature. Ecosphere, 12(6), e03535. 

• Paper evaluates 132 papers to characterize current state of uncertainty 
reporting to assess the most commonly reported sources of error. Suggests 
areas for improvement in the completeness and transparency of scientific 
reporting in ecosystem studies. 
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Zhao, J., Liu, D., Zhu, Y., Peng, H., Xie, H. (2022). A review of forest carbon cycle 

models on spatiotemporal scales. Journal of Cleaner Production. 399:120692. 
• Systematic review of forest carbon cycles models on spatiotemporal scales with 

a comparison of advantages and disadvantages across scales. Proposes future 
needs and ideas for comprehensive assessment of method developments. 

 


